
DOCUMENT RESUME

ED 083 813 EM 011 534

AUTHOR Bigelow, Richard Henry; And Others
TITLE Specialized Languages: An Applications

Methodology.
INS1ITUTION California Inst. of Tech., Pasadena.
SPONS AGENCY National Science Foundation, Washington, D.C.; Office

of Naval Research, Washington, D.C. ; Rome Air
Development Center, Griffiss AFB, N.Y.

REPORT NO C1T-REL-R-7
PUB DATE Feb 73
NOTE 24p.; See also EM 011 530 through EM 011 533 and EM

011 535 though EM 011 536; Paper presented at the
National Computer Conference and Exposition (New
York, June 1973)

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS *Computer Programs; Computers; *Computer Science;

Information Processing; Interaction; Man Machine
Systems; Program Descriptions; *Programing;
*Programing Languages

IDENTIFIERS *Rapidly Extensible Language System; REL

ABSTRACT
The potentialities of specialized languages, in

comparison to those of other types of specialized systems, are
discussed. The point is made that these languages have been invented
by information processing professionals in order to assist the
problem-solving activities of computer users by providing them with
appropriate interfaces to the computer, with languages natural to
their own view of reality. The nature of today's ubiquitous
applications packages are examined, and the characteristics of the
environments which support these languages are discussed. Finally,
some experiences with the Rapidly Extensible Language (REL) system
are presented. (Author/PB)

m

0

Ui

aprLoject r9ort on

EL

Co-principal investigators
Bozena Henisz Dostert
Frederick B. Thompson

California Institute of Technology
Pasadena, California , 91109

FILMED FROM BEST AVAILABLE COPY

Specialized Languages:
An Applications Methodology

Richard Henry Bigelow
Norton Robert Greenfeld

Peter Szolovits
Frederick B. Thompson

February 1973
REL Project Report No. 7

This resei,rch has been supported by:
Office of Naval Research contract #N00014-67-A-0094-0024
National Science Foundation grant #GH-315i3
Rome Air Development Center con-...a:t #F30602-72-C-0249

This paper has been accepted for presentation at the National Computer
Conference and Exposition, New York, June 1973.

California Institute of Technology
Pasadena, California 91109

U.S. DEPARTMENT OF HEALTH,
EDUCATION 8 WELFARE

NATIONAL INSTITUTE OF
EOUCAT ION

THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Thompson 0

Abstract: Information processing professionals, in their quest

to assist the problem-solving activities of computer users, have

invented a variety of specialized systems which facilitate work in

particular areas. This paper considers the potentialities of

specialized languages in comparison to other types of specialized

systems. We discuss the characteristics of environments to sup-

port these languages and present our experience with one sich

environment, the REV system.

Index terms: specialized languages, applications languages,

REL, metalanguages, English question-answering systems,

relational data bases, language implementation, specialized

environments, applications systems.

Thompson 1

SPECIALIZED LANGUAGES:
AN APPLICATIONS METHODOLOGY

One objective of the information processing community

is to aid the problem solving activities of its clients. In this

paper, we will discuss a methodology for serving the needs of

the "user", that is the end-user: the manager running an

organization, the accountant understanding the financial cc,ndition

of a company, the anthropologist studying a culture, the engineer

designing some equipment, the physicist analyzing an experiment,

or the meteorologist predicting the weather. Each of these users

has his own particular, idiosyncratic problems. The computer

should be an effective tool for him in dealing with these problems.

Our methodology is designed to provide each of these users vith

an appropriate interface to the computer, with a language which is

natural to his view of reality.

In this paper we examine the nature of today's ubiquitous

applications packages, discuss our notion of applications languages

and present some of our experience with the REL system, which

has been designed to incorporate our views on specialized user

languages.

Thompson 2

APPLICATIONS PACKAGES

The bare hardware of a computer, from the point of view of

the user, is impotent. An operating system augmented by a few

language processors, e. g. FORTRAN and COBOL, is hardly more

useful. Indeed, when constructing complex applications for an

end user, the standard programming technique is to first build

a set of data structures and utility routines which then become

the user's environment and make the computer habitable. We will

call any consistent set of such structures and routines an

applications package.

The heed for many such applications packages is clearly

demonstrated by their existence and wide usage. Examples are

standard programs for payroll and inventory control in business,

the SPSS [1] package for statistical analysis, subroutine libraries

and languages such as NAPSS [2] for numerical analysis, arid

APT [3] for mach4ne tool control. Hundreds of other illustrations

may easily be found [4, 5].

All these systems have a common property: they provide

operators which perform meaningful unit operations needed by

their users, Their primitives draw up payrolls, compute

correlations and solve differential equations. We wish to examine

how the user invokes these primitive operations to fulfill his

requirements.

In the most unsophisticated system, the user invokes a

unitary operator: e. g. "produce the payroll". This is a complete

Thompson 3

program, perhaps operating on large bodies of data, with well-

understood, structurally constant results. Because this type of

applications package supports only a single aspect of its -users'

reality, and, being optimized around a single task it is not

easily modifiable to meet even simple contingencies, it often quickly

becomes inadequate. Even payroll problems change in structure,

as well as in data, a?..d because the user has no concept of the

computer representation of sub-parts of the whole problem, he

is left with the use of a partly obsolete operator, or he becomes

dependent on his programmers to make even the most minor

structural changes in his problem solutions.

The typical computer user, in fact the typical person, has

concerns which consist not of single, all-encompassing operations,

but of a number of lower level tasks which ir. -ornbination allow

the solution of a range of related problems. For example, the

accountant does not care merely that he be able to produce iris

quarterly financial report. He has to be able to i.westigate the

data on various aspects of the company's fiscal status to understand

his problems. The products he produces are not just the periodic

reports, but also tax and cash flow calculations, projections,

special briefings, etc. Similarly, the physicist manipulating his

experimental data looks not for a single answer, bt, for a

multitude of indications and partial results which may help him

understand the processes he is studying.

Thompson

A computer system which supports si.ch investigations must

embody a number of cliff(rent primitive operators, to correspond

to the variously complex conceptual units of the user. It must

also allow the hierarchical combination of these primitives to

build up the operations which match higher level user concepts.

The common production of standardized subroutine libraries

in many fields attests to the widespread acceptance of this view.

Such libraries, along with the standard algebraic computer languages,

allow the construction of hierarchically composed calls on the

primitives, offering flexibility and power. What, then, are the

inadequacies of these sophisticated applications packages to the user?

On the one hand, a computer system for a particular user

must embody a !arge set of the conceptual primitives of his

problem area in order to be useful to him. In addition, however,

that system must also exclude the incursion of as many as possible

of those computer concepts unrelated to the problem area. All of

today's generally available programming languages have a strong

bias in their syntactic and semantic capabilities to fit the needs of

their designers, namely computer scientist:. Their natural

primitives include the control of storage, input and output, the

declaration of procedures, data types, etc. Every one of these

concepts is foreign to the problem area in which the non-programmer

user is working. Thus, although the subroutines in a library may

well represent valid primitives to our user, the irrelevant :oncepts

Thompson 5

of program control, procedure calling and data management intrude

upon and disrupt his problem solving. The user cannot build up

problem structures nor introduce new relationships in his data

in a manner natural to his understanding of his problem domain.

Indeed, he must cope with "computerese" concepts of job control

language, data '',1es and procedure invocations merely to access

the primitive operations provided him [6].

Current users struggle with this disruption in different ways:

the accountant must work through a programmer, removing

himself from direct contact with his data; the physicist often

becomes a programmer, sacrificing his productivity as a scientist

to develop competence in a field of only incidental interest to his

work. We believe it to be the responsibility of the information

science community to seek better technical solutions to the problem

of providing the end user with more viable tools.

Thompson 6

APPLICATIONS LANGUAGES

To be most effer'.'ively utilizable, the computer must

metamorphase to be each user's own conceptual machine. It

must embody exactly those primitive notions which the user finds

fundamenal; it must support exactly that structuring of complex

problems which the user finds natural. And because the user must

be able to communicate easily with his machine, it must provide

for communication in a language which embodies the user's

conceptual primitives and the means of composing them clearly

and concisely.

It is not generality that the language must provide. Indeed

it is exactly in its ability to reflect the biases, limits and idio-

syncratic representation of the user's reality that a specialized

language finds its greatest strengths. The user brings with him

a host of presuppositions, the knowledge of his field, of which

he is only peripherally aware, but whose logic underlies all of

his problem solving activities. General languages know nearly

nothing at.out the problem domain. All checks, all limits, all

structures must be explicitly expressed by the user. In any

high-level application, the amount of knowledge which the user

has about his data is so enormous that to enter it as explicit

instructions to the computer system is unconscionably tedious.

Further, to probe his data in a system which recognizes none

of his tacit knowledge forces the user to ,conclude that the

system is shallow and "obviously stupid."

Thompson

The implicit inclusion of the tacit knowledge of a specialized

problem domain is the advantage which gives the applications

language both expressive conciseness and computational efficiency

in the problem solving tasks of the particular end user [711.

With such a language the user can concentrate on his problem

instead of the programming details. There is no intrusion of

foreign concepts from the implementation - the user manipulates

structures and operators that are familiar and relevant. He can

compose the operators in different ways to solve various aspects

of his problem. The power of the language opens new options and

capabilities in his use of the computer, and the naturalne 3 of the

language allows him to exploit these capabilities himself, bringing

his own implicit knowledge and intuition to bear without having

to work through a programmer.

At the same time, the embodiment of the user's presuppositions

implicitly in the prior programming of the primitive operators

results in increased computational efficiency. It is often erroneously

assumed that higher level, user oriented languages entail

increased computing times as well as excessive implementation

costs. Quite the contrary. The existence of specialized knowledge

of the field of application allows more global optimization of the

basic primitives. And once programmed, these primitives can

be composed in the solution of wide ranging problems, being

reused a multitude of times without involving any new programming

Thompson 8

tasks. One can appreciate the extent of such savings by considering

the compaction of records and optimization of access to peripheral

storage which the programming of specialized primitives can

embody, savings in ultimate computer time which can amount to

orders of magnitude for large data bases [8].

The fear has been expressed that the wide-spread development

of such languages would lead to a large number of small user

communities, each with its own highly specialized language, each

unable to communicate data and methods of solution to the others.

Consequently, the argument goes, we should concentrate upon

standardizing our languages rather than specializing them, to allow

the easy exchange of data, algorithms and personnel.

We find two related answers to this line of argument. First,

we do not believe that our current experience with sharing data

or programs justifies the requirement of adherence to rigid

standards on the part of all computer users. Specialized languages

already tend to arise in response to natural divisions which exist

among groups of users. Hence, between gi oups isolated by

specialized languages, it is already unlikely that they would

profit from sharing of common technique and common data.

Second, the increased capabilities provided a group by a

specialized language may well justify accepting the cost of

relative isolation. It is the user community's responsibility

to regulate language development to achieve an economic balance

Thompson 9

between specialized capability and communicatioi . Between

groups where communication and sharing of data is desirable,

their various specialized languages can explicitly facilitate

precisely such co,nmon access and cross talk.

Currently, the economic factors underlying the decision

of whether or not to create a specialized language are dominated

by the cost of implementation. Technical advances of the sort

we will describe can reduce this cost sufficiently to allow that

decision to be made on the grounds discussed above. We turn

now to an examination of the task of implementing specialized

languages.

METALANGUAGES

From the implementor's viewpoint, a computer language

consists of a set of procedures which constitute the semantic

primitives of the language, the s.:t of data structure to which

these are to be applied and a syntax which allows the user to

compc..e his operations and to apply them to his data. The task

cf the language implementor is to analyze the natural requirements

of the user in each of these three areas and to design and code

the procedures, data structures and syntactic processor to

realize the language.

We can examine the language writer's problem just as we

looked earlier at the end-user's problem. We note that current

Thompson 10

programming languages do not have operators and data structures

in their semantics which specifically support language implementation.

Because their facilities are much more primitive and detailed,

the construction of applications languages is difficult and costly.

The language implementor needs a specialized language, just as

the user does. The primitive concepts of this language must be

parsing, storage management, permanent and temporary data

base management, semantic composi.cions, etc. Again we emphasize

that this implementor's language is not a generalized language.

Not all implementors will want the same parser nor the same data

base management scheme. However, for particular classes of

language implementers, those implementing similarly structured

user or object languages, a particular implementors' or meta-

language is useful.

A metalanguage structures and supports the task of the

applications language implementor in the same way that the

applications language structures and supports the task of the user.

It allows the implementor to concentrate on the problems of

designing his language and supports its implementation. For

example, provision within the metalanguage of an efficient

parsing algorithm coupled with a simple means of expressing

syntax rules will allow the programmer to utilize a natural syntax

in his language. He is no longer forced to a simple syntax by

the high cost of implementing anew a complex parser. The

Thompson 11

metalanguage can embody much of the tacit knowledge of the

language implementor about the internal structure of the

language. For instance, a rigid coupling between rules of grammar

of the object language and the invocation of the associated

semantic primitive routines allows the metalanguage to know

the calling and return structures of these semantic routines,

and to use this knowledge to allow a more concise description

of the routine and to perform error checking cr optimization on

the object language. The metalanguage also directs the attention

of the language implementor to the central issues of his task:

the construction of the operators and data structures that are

significant to the user and a natural syntax for combining them,

REL - THE RAPIDLY EXTENSIBLE LANGUAGE SYSTEM

The REL System has been developed to give concrete

realization to the ideas presented in this paper and allow us

to get actual experience with the use of such a system. Figure 1

gives a schennatic view of the system architecture from the

viewpoiAt of this paper.

We will not further describe REL here, 1-.ut will only enlarge

upon those aspects which relate to ideas discuss-ed in this paper.

For a more complete description of REL, see references [9, 10, 11].

A
d t,0
E
E
o g

43,

user languages
and associated data bases

61

cd

tog
E

cd

REL utilities and services

Thompson 12

0 0 0

REL language processor

REL Operating System

0S360 and associated hardware

Figure 1: Schematic View of the REL System

The REL System provides a metalanguage for the implement-

ation of sentence-driven, syntax-directed, interpretive and

extensible applications languages [12]. Within the REL

environment, a lanv.age is represented by a set of general

rewrite grammar rules, their corresponding processing

routines and the data structures of the associated data items.

The grammar rules structure the operation of the language:

they define the valid syntactic constructs which the user may

Thompson 13

employ, they cause invocation of the syntactic and semantic

processing routines, and they define which data types may be

related in the language. As an example, consider the following

grammar rule:

< class;relation_image>=> <relation> 'OF' <class>

This may be a rule of grammar of a language which expresses

aspects of a relation calculus. The rule, written exactly as shown

here, states to the REL system that:

the syntactic construct "name of a relation" followed by the

word "of" followed by "name of a class" is valid.

such a construct represents another data item of the type

"class",

this new item may be computed by applying the program named

"relation image" to the two old data items.

Notice how this metalanguage forces the implementor's attention to

exactly the problems which should concern him: the primitive entities

of his language, e. g. "class" and "relation"; the primitive operations

of the language, e.g. "relation image"; and the syntax by which these

can be combined, e. g. "regions of salesmen", 'suppliers of components.

We have emphasized that the user's language should fit his needs

naturally. That means that he must often be able to define new

operations on the basis of his previously existing operations to express

new tasks and methods of solution. RE L provides the applications

programmer with a powerful tool to implement this ability for his

language. Using whatever external syntax he finds natural for his

I1

Thompson 14

users, the programmer can invoke an REL system utility which

will add to the user language's gram -rear new rules which express

the desired definitions of the user. We return to this point

later.

REL APPLICATIONS LANGUAGES

We have used REL to implement a variety of languages and

have found it to be very support ive of them. Indeed, even if we

had wanted to develop only one fairly complex language, we would

have found it desirable to separate the REL system and general

language processor facilities from the syntax and semantics of the

particular language. Doing so has given us a framework in which

to design our languages that has been at least as important as

the support we have gotten to actually write the code.

The languages implemented under REL to date include REL

English [13, 14, 15], the Animated Film Language (AFL) [16],

a language for solving ordinary differential equations [17], and a

discrete simulation language 18], We present a few examples from

the first.

REL English is a technical English question-answering language

for the analysis of complex sets of highly interrelated data. Its

primitive operations are based on the data and semantics of a

relational algebra. Thus, L.he language was designed with a view

to serving users with messy, large-scale data-related mr,dels.

Thompson 15

REL English's current users include a cultural anthropologist,

a research hospital, and elements of a military staff.

The syntax of IIEL English is a complex, quite natural deep

case grammar which provides our users with powerful but

concise statement and query capabilities. The primitive data

entities of the language are individuals, classes and binary

relations. REL English has all the common notions of sentence

structure, time, function words like "all", "what" and 'the. "

It does not include any particular vocabulary but provides the

ability for the user to introduce new words which denote individuals,

classes and relations from his own problem domain. Further, it

has the capability for defining new verbs in terms of relations and

the verbs of being, and it provides the abiltiy to extend itself by

new syntactic forms which represent composed operations of the

language, as specified by the user.

Note that this much of REL English is common to a wide variety

of users. Relating to the E rler discussion of the cost of imple-

menting specialized languat,es, we remark that to this point the

cost of adding yet another English-based language to REL is merely

the effort of deciding that the relational data structure and an

English statement and query capability are natural to the user's

problem area. To specialize to the requirements of a particular

user, the extension facilities of REL English are used to introduce

the relevant user concepts to the language.

Thompson 16

Our example will be the familiar one of the personnel data

base. The initial preparation of the language consists of acquiring

a copy of REL English and adding appropriate terms:

employee: =class
department: =relation
immediate supervisor: =relation
salary: =number relation

We can then include all of the basic data on each person, usually

taking it from some fixed-format file. At this point, the personnel

manager can ask the usual questions:

What is Sue Jones' salary?
When was John Smith Bob ones' immediate supervisor ?
How many departments have employees whose salary is over 20000?

The manager will soon extend this simple language with meaningful

and useful terms:

def: senior employee: employ whose salary is at least 18000
def: subordinate: converse of immediate supervisor

Are all managers senior employees?
What proportion of senior employees are female?
Which managers have more than five subordinates?

The user can, of course, produce reports. The statement:

What is the ratio of male employees to female employees in
each department?

produces a columnar listing of the departments and their male/

female ratios. Other involved conceptualizations can be expressed

by verbs:

earn: =verb (<object> is the salary of <agent>)

Does some employee earn more than his immediate supervisor ?

The capabilities represented here allow the user to efficiently

explore the interrelationships which are meaningful to his task.

Thompson 17

The above is a small illustration of the type of applications

language which we have implemented in the REL system. Each

of the other languages mentioned have quite different syntax and

semantics. Although our experience to date is limited, these

applications have been found to be directly and effectively usable

by their intended users and inexpensive to implement.

CONCLUSION

The continued development of more sophisticated software

and better, less expensive hardware should lead to the tremendous

expansion of the computer users' community. As a tool for organ-

izing and managing large, complex human problems, specialized

computer languages show great promise to increase our effective-

ness in handling an increasingly complicated world; indeed, only

by the support of specially tailored "natural" languages will the

large group of new computer users have the ability to effectively

deal with this growing resource. Whenever possible, the burden

of making man-machine communication tractable should fall on the

machine, where, we believe the burden is manageable through the

use of specially designed mecalanguages and applications languages

as we have discussed.

Our experience with REL gives us confidence that the notion of

a metalanguage for the implementation of whole classes of appli -

cations languages is legitimate and valuable. We intend to continue

exploring the wide range of end-user oriented languages which find

Thompson 18

a natural home within our system, and we envision the future

construction of other metalanguages (or programming systems)

for different classes of applications languages.

We would like to make a few final comments about the impact

of the above ideas on the computer professions. We expect a

redefinition of the realtion between systems programmer,

applications programmer and user. The user has problems to

solve, which he can state in some language specialized to his

universe of discourse. The task of the applications programmer,

in our view, is to provide the user not with solutions to individual

problems, but with computer languages and capabilities to allow

the user to pursue the solutions of his problems in terms of

concerts which are natural to his problem domain, The task of

the systems programmer is to build efficient language processing

systems and their associated metalanguages so that the applications

programmer can concentrate on the structuring of the data, prep-

aration of the processing algorithms and specification of the syntax

natural to his user. The current work in computer systems, such

as REL, will facilitate the task of the applications programmer.

Finally, the power and thus the responsibility of the applica-

tions language implementor is great. As our everyday language.

affects our thoughts, our computer languages guide and limit our

work. An appropriate and flexible applications language can

greatly enhance the work of a user; a poor and rigid one can

Thompson 19

impoverish it. The future of our ability to effectively use one

of our most powerful tools, indeed, of our ability to cope with

an informationally overwhelming world, is at issue.

ACKNOWLEDGEMENT

The authors would like to acknowledge the assistance of

Ms. Sara Gomberg in the preparation of this paper.

REFERENCES

1. Nie, N. H. , Bent, D. H. , and Hull, C. H. SPSS: Statistical
Package for the Social Sciences. McGraw-Hill, New York, 1970.

2. Symes, L. R. and Roman, R. V. Structure of a language for
a numerical analysis problem solving system. In Interactive
Systems for Experimental Applied Mathematics, Klercr, fvi. and
Reinfelds, J. (Eds.), Academic Press, New York, 1968, pp. 67-78.

3. APT Part Programming. McGraw-Hill, New York, 1967.

4. Sammet, J. E. Programming Languages: History and
Fundamentals. Prentice-Mil, Englewood i s, I 69.

5. Sammet, J. E. Roster of programming languages, 1972.
Computers and Automation 21, (B (August 30, 1972), pp. 123-132.

6. Dmytryshak, C. A. The universal consulting language - alias
the investment analysis language. 1972 FJCC, AFIPS Conf. Proc.
vol. 41, part I, pp. 525-535.

7. Thompson, F. B. and Dostert, B. H. The future of specialized
languages. 1972. SJCC, AFIPS Conf. Proc. vol. 40, pp. 313-319.

8. Greenfeld, N. R. Computer System Support for Data A-ialysis.
Doctoral Dissertation, REL Project Report No. 4, California
Institute of Technology, Pasadena, Calif. , 1972.

9. Thompson, F. B. , Lockemann, P. C. , Dostert, B. H. and
Deverill, R. S. REL: A rapidly extensible language system.
Proc. of the 24th ACM Natl. Conf. , 19;9, 399-417.

3.0. Dostert, B. H. REL - An Information System for a Dynamic
Environment. REL Project Report No. 3, (Thlifornia Institute
of Technology, Pasadena, Calif. , 1971.

11. Thompson, F. B. and Dostert, B. H. The REL System,
Fourth International Symposium on Computer and Information
Sciences (COINS-72), Miami, Florida, Dec. 1972.

12. Szolovits, P. The REL Language Writer's Language:
A Metalanguage for Implementing Specialized Applications Languages.
15 octoral Dissertation, California Institute of Technology, Pasadena,
Calif., forthcoming.

13. Dostert, B. H. and Thompson, F. B. The Syntax of REL
En lish. REL Project Report No. 1, California Institute of

ec no ogy, Pasadena, Calif. 1971.

14. Dostert, B. H, and Thompson, F. B. Syntactic Analysis in
REL English: a computational case grammar. Statistical
Methods in Linguistics, 8(1972), pp. 5-38.

15. Dostert, B. H. and Thompson, F. B. Verb semantics in a
relational data base system. Proc. ONR Symp. on Text Processing
and Scientific Research, Pasadena, Cara. , November 1972.

16. Bigelow, R. H. , Greenfeld, N. R. , Szolovits, P. , and
Thompson, F. B. The REL Animated Film Language. REL-
Project Report, forthcoming, California Institute orrechnology,
Pasadena, Calif.

17; Bigelow, R. H. Computer Languages for Numerical Engineering
Problems. Doctoral Dissertation, REL Project Report No. 5,
California Institute of Technology, Pasadena, Calif. , 1973.

18. Nicolaides, P. L. RELSIM - An On-Line Language for Discrete
Simulation in Social Science Research. Doctoral Dissertation,
California Institute of Technology, Pasadena, Calif. , forthcoming.

